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1 Introduction

1.1 Definitions

Here’s a list of terms that will be used frequently in the following report.

• Sleepy Node: device that, for energy saving purpose, spends most of its
life in a power saving state.

• Proxy: any node that is configured to, or selected to, perform communi-
cation tasks on behalf of one or more Sleepy Nodes.

• Regular Node: any node in the network which is neither a Proxy nor a
Sleepy Node.

• Sleepy Proxy Resource (sp): the proxy’s resource a sleepy node must send
registration requests to. A proxy server lets the sleepy node know the URI
of this resource during proxy discovery phase.

• Container Resource: a given proxy, for each sleepy node willing to delegate
resources to it, must create a resource, the container resource, whose state
represents the list of resources the considered sleepy node has delegated to
it (one container resource for each delegating sleepy node). Each resource
delegated by a sleepy node will have the container resource URI (Location
Path) as prefix.

• Location Path: the URI of a Container Resource

• Dirty Resource: a resource that has been modified by an entity who is not
the owner of the resource. The dirtiness is reset when the owner of the
resource becomes aware of the new value and downloads it.

1.2 Low-power sensors: the reachability problem

The large diffusion of sensors happening at our days on one hand enables new
concepts like smart houses, on the other hand carries with it new challenges due
to their specific characteristic.

One of these challenges consist in being able to communicate with a device
which, for energy saving purpose, spends most of its life in a low-power consump-
tion state and periodically go back to an operative mode in order to perform
their task, like measuring temperature, after which it goes to sleep again - from
here, we call such a device a sleepy node; while the device is in a sleepy state, it
is not possible to contact it, e.g. in order to obtain the measured temperature
value, neither is possible to know a priori when it will wake up.

A solution has been proposed in draft RFC Sleepy CoAP Nodes [1].
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1.3 A possible solution: Sleepy Coap Nodes

The solution proposed in draft RFC Sleepy CoAP Nodes make use of a Proxy,
i.e. a node in charge of storing the measurements sleepy nodes send to it over
time, and making them available to nodes interested in.

Figure 1 shows the main actors of this scenario: the sleepy node, the
proxy and the regular node. The last one would be whatever node needs to
exchange informations with a sleepy node and, in the general case, will achieve
this exchange of informations by means of an intermediate node, the proxy.

Figure 1 also shows the interactions between the three actor just introduced,
summarized under three interfaces: synchronize, delegate and direct. The syn-

Figure 1: Overview of the actors involved

chronize interface is used for communications happening between sleepy nodes
and proxies. These interaction are always initiated by the sleepy node, since
the proxy has no means of knowing a priori when the sleepy node is active and
when instead it is sleeping. In particular, this interface is used for the following
exchanges:

• a sleepy node wants to discover which proxies are available (if any) and
the proxy’s resource the sleepy node must send delegation request to. We
call this resource sleepy proxy resource (sp).

• a sleepy node wants to delegate and initialize one or more of its resources
to a proxy, so that the proxy is responsible for them and, when it receives
requests for these resources, it will answer with his own copy of them.

• a sleepy node wants to update at proxy the state of a resource it has pre-
viously delegated to the it and/or the registration lifetime of the resource
itself.

• a sleepy node wants to know if the proxy-local copy of one or more of
the resources the sleepy node has delegated have been modified by some
regular nodes. This may happen for example for configuration files.

The delegate interface allows a regular node to perform information exchanges
with a proxy like:
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• a regular node wants to discover which proxy are available (if any) and, for
each one of them, which sleepy nodes have delegated at least one resource
to that proxy and, for a given sleepy node, which resources it has delegated
to the proxy.

• a regular node wants to retrieve the state of a resource delegated on a
certain proxy.

• a regular node, in order to modify the state of a resource owned by a
sleepy node, can modify the proxy-local copy of that resource. This may
happen for example for configuration files.

The direct interface allows a sleepy node to exchange information directly with
a regular node. This kind of interaction is always initiated by the sleepy node,
since as we’ve seen the regular node has no means of knowing a priori when
the sleepy node is active and when instead it is sleeping. Examples of such
interaction are:

• let’s say a sleepy node is a sensor in charge of revealing if someone enters
in the room. When this happen, the sleepy node wakes-up and directly
notify the interested regular node of such event.

• every time a sleepy node wakes-up, it may contact a regular node in order
to request to it if some configuration resources of the sleepy node has to
be modified.

Another actor this scenario may include is the Resource Directory. It represents
a discovery server, i.e. an entity whose task is to enable nodes to discover all the
devices in the network, including sleepy nodes, and retrieve their capabilities.
In this paper we will not make use of a Resource Directory, as explained in the
assumptions (section 2.1 on page 10).

Let’s see which type of operations and message exchanges must by supported
by implementations of sleepy nodes, proxies and regular nodes.

1.4 Interaction Model

Let’s see more in detail the type of messages that are expected to be exchanged
in a scenario reproducing the use cases illustrated in section 1.3 on the previous
page

1.4.1 Synchronize interface

Proxy discovery and resource delegation

The first step a sleepy node has to perform is discovering presence of proxies in
the network. This may be achieved sending a multicast request to the link-local
all nodes multicast address, setting .well-known/core as Uri-path and resource
type rt=core.sp as Uri-Query. Any answering proxy will include the sp resource
a sleepy node must send registration request to. This information will be codified
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accordingly to [2]. Figure 2 shows this discovery procedure. Note: URI-Host
and URI-Port options are omitted for shortness.

Figure 2: A sleepy node discovers a proxy

Once a sleepy node has discovered a proxy and its sp resource, it will pre-
sumably delegate some resources to the proxy using the received sp resource
as Uri-Path. It will also include, in the Uri-Query field, a string whose value
represent an identifier for the sleepy node itself. Since a sleepy node can dele-
gate the same resource on different proxies, this option enable regular nodes to
understand if resources offered by different proxies belong to the same sleepy
node. The proxy will answer specifying in the Location Path field the location
path of the container resource, i.e. the prefix for the proxy-local copies of the
resources delegated by the registering sleepy node. The registration procedure
must be implemented as idempotent and it is showed in figure 3.

Figure 3: A sleepy node registers three resources with a proxy

5



Resource initialization and updates

Registering a resource, however, is not enough for the resource to be reachable
from regular nodes. A further step is required, the initialization, shown in
4. Initialization is achieved by means of a PUT operation, with the delegated
resource to be initialized placed in the Uri-Path field. Please note the Uri-
Path is composed by taking the location path for the specific sleepy node and
concatenating it with the resource name, in the example respectively sp/0 and
sen/temp, producing sp/0/sen/temp.

Another information that may be sent along with this initialization message
is the lifetime of the registration of this resource: in the example, by attaching
a value of 3600 as lifetime, the sleepy node is indicating that it is supposed to
send a temperature value at least every hour in order to keep the registration
of this resource valid. When a resource expires, its value on the proxy is no
longer valid, thus a NOT FOUND response will be sent to anyone performing
any operation on that resource. If the owner sleepy node happens to receive a
NOT FOUND in response to and update operation on a resource delegated by
him, it is supposed to perform a new registration of that resource at the proxy.

Finally, the payload of the initialization request is supposed to contain the
initial state of the resource. The proxy will answer with a Created message
and, from now on until the expiration, the initialized resource is reachable from
regular nodes.

Figure 4: A sleepy node initializes a resource it has previously delegated

Every time a sleepy node wants to update the state of a delegated resource,
it repeats the steps executed for initializing a resource, the only difference is
Proxy answers with a 2.04 Changed message, as shown in figure 5.
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Figure 5: A sleepy node updates a resource it has previously initialized

Retrieving of resources modified by regular nodes (dirty resources)

Another information the sleepy node may be interested in is the list of its dele-
gated resource that have been modified by regular nodes. This may make sense
for example for resources whose state represent a configuration information.
There are two ways of obtaining this information: using a PUT [1, sec. 6.3] or
a POST [1, sec. 5.6] request.

In the first case, shown in figure 6, the sleepy node simply issues an update
request and, if the response coming from the Proxy includes a payload, this
field is expected to contains the list in application/link-format format of the
delegated resources that have been modified by regular nodes. The sleepy node,
once have retrieved this list, is supposed to issue a GET request on each resource
of the list, in order to retrieve the new values.

Figure 6: A sleepy node updates a resource it has previously initialized and
retrieves the list of its delegated resource that have been modified by regular
nodes
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The second approach, shown in figure 7 and exploiting a POST request, is
different from the previous approach in that the previous one limits the user
forcing him to put in the URI-Path field the relative path of the resource to
be updated by the sleepy nodes, while the second approach let the user put
in the URI-Path the relative path of whatever delegated resources, hence an
implementation may exploit this fact an have the proxy answering with different
subset of the dirty resources basing of what has been putted in URI-Path.
Furthermore, the URI-Query option may be used to filter the result.

Figure 7: A sleepy node retrieves the list of its delegated resource that have
been modified by regular nodes

1.4.2 Delegate interface

A regular node discovers proxies and the resources they expose

A regular node interested in retrieving the copy owned by the proxy of one
or more resources delegated by some sleepy node is supposed to, as first thing,
discovery the available proxies and which sleepy nodes have delegated something
to them. This procedure is shown in figure 8 on the following page, where it is
possible to observe that the regular node use ep=* as URI-Query. This results in
proxies answering with the list of Container Resources they have, and including
the associated End Point identifier (sleepy node identifier), thus allowing the
regular node to detect if e.g. a resource found on multiple proxy is actually the
same resource, delegated by the same sleepy node on more proxies.

Once the regular node has discovered some proxies, it may either

• ask a proxy for the list of resources a certain sleepy node has delegated to
it, by means of a GET request issued on the container resource associated
to the sleepy node the regular node is interested in

• send a multicast request to multiple proxies asking for the resources com-
pliant with some queries.
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Figure 8: regular node discovers proxy

Using a resource whose reference is known

Once the regular node knows the URI of the resource it is interested in, it may
either read its state, with a simple GET request, that will be answered with
a simple 2.05 Content message with the state of the resource as payload, or
modify its state. This last option, shown in figure 9, make sense overall for
configuration file. In the same figure we may notice that, after the regular node
has modified a resource, the sleepy node, following the procedure illustrated
in 1.4.1 on page 7, may ask for the modified value.

Figure 9: regular node discovers proxy

9



2 Implementation of Coap Sleepy Node Draft

In this section we describe which assumptions has been made in order to create
and implement a working scenario aimed to reproduce the interactions between
sleepy nodes, proxies and regular nodes as described in [1] (see 2.1). We will se
which goals our implementation aimed to achieve, how we were able to achieve
them, which implementation problems arose and how they have been solved
(see 2.2 on page 13 and 2.3 on page 18).

2.1 Assumptions and Goals

In order to implement a working scenario aimed to reproduce the interactions
between sleepy nodes, proxies and regular nodes as described in [1], the following
considerations were made:

Devices and services

• Resource Directory (RD) implementation has been omitted (see 1.3 on
page 3).

• In the scenario we are going to represent we will make use of one proxy
only; however, the code will support the presence of multiple proxies.

• Even if theoretically the concepts of sleepy node and proxy do not exclude
each other, in fact it seems a contradiction to have a sleepy node offering
the proxy service, thus we are not going to implement the proxy service
on a sleepy node.

• In our implementation the proxy service is supposed to be running on the
same machine acting as a gateway.

Resource creation and initialization

• We allow resources with a path-like name (e.g. ”/a/b/c”) to be delegated.
From the user viewpoint this should be a mandatory requirement; on the
implementation side this will bring to some difficulties, as explained in 2.3
on page 18.

• As we’ve seen, the procedure used in order to delegate a resource and
make it accessible from the outside consist of two step: delegation and
initialization. Only after a resource has been initialized it is visible (and
thus reachable) from the outside.

Thus, a regular node issuing a request to a resource that has been dele-
gated but has not been initialized will receive a NOT FOUND response.
Instead, if the same request comes from the owner of the resource, it will
receive METHOD NOT ALLOWED as response. An exception of this
behavior, of course, is represented by the initialization request, since the
sleepy node must be allowed to perform it.
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Proxy discovery

• Since as of now the multicast implementation in contiki is not reliable,
Proxy discovery procedure is performed sending unicast messages to the
address of the proxy (which is supposed to be known), instead of using
multicast communicatiaon.

Security considerations

• Security mechanisms has been omitted. An important example is: We
assume sleepy nodes and regular nodes update different resources; gen-
erally speaking, a sleepy node should update the state of the resources
representing his measurement, while a regular node should update config-
uration resource only. However, we don’t perform any kind of supervision
on this. Thus, if a sleepy node and a regular node happen to update the
same resource, there is no guarantee that the value written by the regular
node will persist.

GET operation

• a GET issued to the .well-known/core resource of a certain proxy will
be answered with the list of all the resources explicitly delegated at that
proxy and all the container resources it exposes.

• as specified in 1.4.2 on page 8, a GET operation performed on a Container
Resource associated with a sleepy node sn0 will be answered by the proxy
with the list of resources delegated by sn0. Furthermore, we allow the node
performing the GET request to specify some query using the URI-Query
option in order to filter the resources included in the result.

Resource deregistration

Draft [1] is not very clear in defining what lifetime is, since it’s not clearly defined
whether it is considered to be associated with the registration of a resource or
with the freshness of its value. Thus, we have had to define the lifetime in a
more precise way:

• Given a Delegated Resource which has been initialized, the lifetime is the
maximum time interval allowed to elapse between two consecutive write
on the initialized resource.

• When the lifetime expires, the value of the associated resource is consid-
ered no longer valid and thus the resource is removed from the proxy.

• A resource may or may not have an associated lifetime. In the second
case, the resource never expires.

• Given a resource R with initial lifetime lt, every time his owner send an
update request for R, the remaining lifetime of R is reset to lt.
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• The owner of a delegated resource R may ask to change the remaining
lifetime of R (with a shorter or longer one) specifying a new lifetime within
an update request.

Dirty resource retrieval

Draft [1] is not very clear in explaining the difference between PUT and POST
operations behaviors regarding the returning of the list of dirty resources to the
requesting sleepy-node. Some inconsistency in the interaction description shows
up. Thus, we must better define the two behaviors:

• PUT besides changing a particular resource value on the proxy, the PUT
has the collateral effect of triggering a link-format response containing all
the dirty resources pertaining to the requesting sleepy node. No filtering
for this response is possible.

• POST may be used to obtain only a specific part of the dirty resources list.
In our implementation we have exploited the POST operation performed
on a initialized resource (initialized by its owner) in order to return the
list of ”dirty” resources. Some filtering is possible:

– the URI-Path option specifies the URI prefix the dirty resources
should have in order to be included in the response;

– the URI-Query option filters the proxy response by means of a de-
tailed query string.

12



2.2 Sleepy-node

2.2.1 Introduction

The sleepy node is in general an hard constrained device: it has low compu-
tational capabilities (low memory, low processing power) and a small energy
availability, since these devices are often battery-powered.

More in detail, conforming to detailed definition presented in [1, sec 1.3], a
sleepy-node is a battery-powered node that can switch off its communication
interface in order to save energy.

The sleepy-node needs to implement some particular functionalities in order
to make available some of its resources to regular nodes. In particular, the
sleepy-node can delegate a subset of its resources to the proxy node, so that
they are available even if the sleepy-node is sleeping.

In other words, the sleepy-node must implement the synchronize interface,
as stated in [1, sec 5].

2.2.2 High level synchronize interface

The code is organized as a library of functions that implement the functional-
ities by the synchronize interface. The sleepy-node programmer can use these
functions in order to communicate with the proxy.

In particular, the programmer has been left with very few things to carry
about. The programmer should:

• initialize the proxy informations to correctly perform the discovery oper-
ation;

• set up the sleep-awake cycle and handle the entering in low power mode;

• inside the cycle, calling the appropriate methods to retrieve updated infor-
mations and/or put new informations on the proxy before going sleeping
again.

Unicast discovery

Due to multicast implementation instabilities in Contiki, the proxy discovery is
a ”fake” discovery operation: it is performed on a-priori known proxy IP. It is
for that reason that the user is supposed to initialize the proxy with its IPv6
address, as shown in the user code organization, section ( 2.2.2).

This is the result from the assumption explained in 2.1 on page 10.

User code organization

The user code should look like the following:

<CoAP re sou r c e dec l a ra t i on>
<s l eepy−node r e sou r c e dec l a ra t i on>
<b u f f e r d e c l a r a t i o n f o r s l eepy−node r e sou r c e value>
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PROCESS THREAD( s leepy node , ev , data ){
proxy#0 = proxy add ( IPv6 address o f the proxy )

< i n i t i a l i z e CoAP resource>
< i n i t i a l i z e s l eepy−node r e sou r c e with bu f f e r>

PROXY REGISTER( resource , proxy#0)
PROXY INITIALIZE( resource , proxy#0, 3600 s l i f e t i m e )
e t i m e r s e t (&et , SLEEP PERIOD ) ;

whi l e ( t rue ){
PROCESS YIELD ( ) ;
i f ( e t ime r exp i r ed (&et ) ){

<turn on rad io i n t e r f a c e >

PROXY CHECK UPDATES( proxy#0)
< i f needed , work on updated value>
<read new value from sensor>
PROXY PUT( resource , new sensor va lue )
i f ( exp i red ){

<p o s s i b l y r e t r y PROXY PUT>
}

<turn o f f rad io i n t e r f a c e >
e t i m e r r e s e t (&et ) ;

}
}

PROCESS END( ) ;
}

The above code shows a simple use-case with only one proxy connection and a
single resource. It is possible to associate multiple proxies to the interface (giving
them different IDs) and multiple resources to every proxy. As a particular use-
case, there is the possibility to register the same resource with different proxies,
in order to add some redundancy for better resources availability.

Notice that the user is asked to initialize the standard CoAP resource, that
could be used to implement the direct interface (not objective of this project);
after that, the user must create a sleepy-node resource, that is an extension to
the basic CoAP resource introducing additional functionalities useful for sleepy-
node operation (more on this topic in section 2.2.3 on the next page).

Useful functions/macros

The user can use these functions/macros to easily handle sleepy node - proxy
interaction:
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• phandler = proxy add(proxy ipv6): adds a proxy with the specified
ipv6 address. Returns an handler that will be used to identify the proxy
during the sleepy-node / proxy interactions;

• PROXY DISCOVERY(phandler): performs proxy discovery ([1, sec
5.1]) on the sleepy node identified by the proxy handler parameter;

• PROXY RESOURCE REGISTRATION(phandler, resource): per-
forms the registration of a sleepy-node resource to a given proxy ([1, sec
5.2]);

• PROXY RESOURCE PUT LT(phandler, resource, lifetime): Ini-
tializes or updates an already registered resource on a given proxy, with a
maximum specified lifetime. After lifetime expiration, the resource will be
no more available on the proxy. This macro performs both the operations
described in pseudocode in the previous section: PROXY INITIALIZE()
and PROXY PUT() ([1, sec 5.3, 5.4, 5.5]);

• PROXY RESOURCE PUT(phandler, resource): same as before,
but with no lifetime. If the resource was already initialized with a certain
lifetime, the proxy will reset the timer to the original lifetime; otherwise
the resource will never expire ([1, sec 5.4, 5.5]);

• PROXY ASK UPDATES(phandler, local path prefix, query): ex-
plicitly asks the proxy for updates of delegated resources whose URI has
a particular prefix. Also, a specific query can be passed in URI-query
format as parameter, in order for the proxy to filter out its response ([1,
sec 5.6]).

2.2.3 Internal implementation

Resources handling

Sleepy-node resources add some useful functionality to the basic CoAP resource.
In fact, the standard coap resource doesn’t carry the value for the resource, since
the standard resource is designed to respond to requests from a client (the sensor
works as a server).

In this case, instead, the sensor works as a client with respect to the proxy.
Hence, the sleepy node must keep in some buffer the value of the resources
delegated to the proxy, so that synchronization operations can be performed on
pre-defined per-resource buffers.

More in detail, the sleepy-node resource object adds the following function-
alities:

• it mantains a pointer to a buffer where the value for this resource could be
stored: this simplifies update operations, since they can now be performed
on the desired buffer in a transparent way to respect the user (the user that
issues a CHECK UPDATES() can find updated values for the modified
resources directly in the prepared buffer);
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• it can be organized in a list of sleepy-nodes resources (basically, a delegated
resources list) so that resources could be easily retrieved by their URI.

This way:

• the resource updates resulting from GET request to the proxy (for exam-
ple, triggered by the request by the user to download updates from the
proxy), directly affect the local buffer of the specified resource.

• a resource in the delegated resources list could be easily found when the
proxy returns a list of resources in a link-format payload: the payload is
parsed and the URI of each resource is used as search key in the resources
list. This way, the buffer for that resource could be retrieved and directly
updated.

Handling the program flow

Interaction with proxy is performed through a sequence of requests/responses,
where requests are initiated by the sleepy node. The sleepy node cannot proceed
until the response from the proxy has been elaborated. Thus, in this scenario, a
code organization that makes use of a blocking send primitive is needed. Without
a blocking send implementation, relying only on the Contiki event driven core,
the program flow would be very complex, since a relative tricky state machine
would be needed.

Blocking functions in Contiki can be implemented and their behavior is simi-
lar to the one found in blocking functions present inside any general purpose OS:
they block the current protothread until an event (in this case, a response from
the proxy) is fired and the control is consequently returned to the previously
blocked protothread.

Protothreads, however, are implemented using a conceptually very simple
stackless mechanism, called local continuation, that makes use of simple C syn-
tax tricks: the thread abstraction is performed through ad-hoc generated code
enclosed in C macros.

It is for that reason that blocking functions in Contiki are not highly man-
ageable: they cannot be implemented as pure functions; instead they have to be
part of the main process function and the only way possible to write a readable,
reusable code is to enclose them in macros as well.

The core for the blocking mechanism is implemented by a predefined macro,
called COAP BLOCKING REQUEST(), whose purpose is to send a CoAP
packet to a given destination. In the sleepy-node implementation, this macro is
wrapped by SN BLOCKING SEND() macro, that tries to keep the code better
structured: it takes as argument the following parameters:

• a function f that is supposed to construct the request CoAP packet;

• the handler of the involved proxy;

• a list of variable parameters for the function f.
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And performs the following:

• it construct a CoAP packet using the function passed as parameter;

• it sends the CoAP packet using COAP BLOCKING REQUEST().

The response will be handled by a particular callback function that puts the
CoAP response packet in a field in the sleepy-node state variable, so that the
response content can be accessed inside the normal program flow.

The final interface resulting from this organization has been described in
section 2.2.2 on page 14.
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2.3 Proxy-node

With the term Proxy we indicate “any node in the network which is configured
to, or selected to, perform communication tasks on behalf of one or more Sleepy
Node”[1].

In section 1.3 on page 3 of this report we have illustrated the main interac-
tions between Proxy and other nodes.

For the realization of this project we assume a Proxy cannot acts as Sleepy
Node and as Proxy at the same time.

Therefore we consider the Proxy as a service, implemented by Californium[3]
framework, running on the WSN gateway.

To instantiate a Proxy we create a new class called Proxy extending CoapServer
(An execution environment for CoAP Resources) [4].

All the needed for the proper functioning of Proxy class is an integer counter
accessed atomically to generate a ContainerResource (resource child of sp in the
tree of resources) identifier for a new delegating node, and a map to connect
every Sleepy Node with its respective ContainerResource.

2.3.1 Proxy initialization

As already mentioned in previous chapter, every Proxy at the beginning has to
expose at least a resource with Resource-Type rt=core.sp. This is because every
Sleepy Node discovers proxies with a GET request to .well-known/core of the
destination node (unicast requests, under the assumptions made in section 2.1
on page 10) with Uri-Query: rt=“core.sp”.

Adding the resource

< /sp >; rt = “core.sp”; title = “SleepyProxyResource”

to Proxy, every GET request will return the list of links about resources hosted
by a server, also containing sp.

As every resource in Californium, the sp resource is a class that extends
CoapResource [4] and overrides its methods in order to handle CoAP requests
for the registration of delegated resources as described in Figure 3 on page 5.

2.3.2 “Path-like”resource name problem

Let’s examine the case of resources with “path-like”name (e.g. “dev/mfg”). At
search time an error arises, and the resource is unreachable from external node
performing requests on it.

This problem is caused by the current implementation of the resource adding
operation, that uses to store resources in a generic tree structure, adding a
resource as child of another. The search operation instead takes the resource’s
name, splits it over the slash character and for every sub-string goes down by a
level in the resource hierarchy.
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Figure 10: A resource with “path-like”name: how Californium adds it and how
it searches for it (dashed arrows)

Example : The resource “dev/mfg”has been added as child of “/sp/0/”. This
is realized with a single resource with name “dev/mfg”(straight arrow in Fig-
ure 10).
Sending a request to “/sp/0/dev/mfg”the server searches in the resource tree
for following resources:

• sp child of / (root)

• 0 child of sp

• dev child of 0 (not present, dashed in Figure 10)

• mfg child of dev (not present, dashed in Figure 10)

Since it can’t find the last 2 resources, server cannot find a tree node that
handles the request and responses with NOT FOUND.
This leads to some conflicts in resource declaration and management.

For this reason two concepts for the same word resource has been introduced:

• external resource: a resource which has in the general case a path-like
name, e.g. “dev/mfg”on previous example;

• internal resource: every node in the path-like tree, e.g. “dev”or “mfg”on
previous example.

On one hand external resources correspond to the vision an external entity
has of the system; on the other hand internal resources are used by the internal
implementation of the server, that uses a tree like data structure.

2.3.3 Resource Tree handling

In order to hide the actual implementation of the tree data structure from an
external user we introduce the concept of Active/Inactive resources and we take
advantage of the Visibility attribute.

So we define the following orthogonal concepts:
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• Active: an internal resource is said to be active if it’s the last piece of
an external resource path-like name; it inherits all the parameters of the
corresponding external resource (e.g. “mfg”in Figure 10 on the previous
page). Otherwise the resource is said to be Inactive (e.g. “dev”). In-
active resources are introduced just to create a branch toward the Active
resource.

• Visible: inherits the meaning from the Californium CoapResource class.
In particular a visible resource is included in the list of links in response
to a CoAP GET request to .well-known/core.

ActiveCoapResource

This distinction takes form under the declaration of the ActiveCoapResource
class, that extends CoapResource and implements attributes and methods to
manage Active/Inactive resources. If the flag active is set the ActiveCoapRe-
source represents an active resource, otherwise it specifies an inactive resource.
This class also distinguishes dirty resources (used to generate the list of modi-
fied resources seen in Figure 7 on page 8).

The class overrides the handleRequest() method in order to respond with
code 4.04 Not Found to every request sent to an inactive resource.

CoapTreeBuilder

For the purpose of creating the abstraction of external resources, a support class
is introduced, CoapTreeBuilder class, responsible for the correct creation and
removal of internal resources in a tree that takes an internal resource as root
(e.g. in our use case the root is a location-path like “sp/0/”). This root together
with the default visibility policy are parameters of a CoapTreeBuilder instance.

Every internal resource in the tree is at least an ActiveCoapResource.
When the creation of an external resource is issued, the add() method is

called with as arguments:

• A new resource declared with the parameters of the external resource;

• A path corresponding to the path-like name of the external resource to be
created;

• (optional) A visibility policy that specifies the visibility to be assigned to
every internal inactive resources created by this invocation.

add() builds a subtree of internal resources from the given path, according to the
given - or default, if not specified - VisibilityPolicy (an enumerator that can take
as value ALL VISIBLE, that means that every resource in the specified path is
set as visible, or ALL INVISIBLE that sets only the newly created resources as
invisible), and adds the subtree as child of the root. The last internal resource
is not created inside the add() method but must be created outside by the user
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(since it has to be initialized with external resource’s parameters) and passed
as add()’s attribute.

The removal of a resource is much easier: by invoking the remove() method a
resource is substituted with a newly created inactive one (it is no more reachable
by any request). Only if the resource has no more children it is deleted and the
remove() is recursively called on the parent if the latter is inactive. If the root
is reached remove() stops without deleting it, since the root is created outside
the CoapTreeBuilder, so it must not be deleted inside the CoapTreeBuilder’s
remove() method.

2.3.4 DelegatedResource

For the use case of our project, active and visible concepts can be easily extended
in the following way:

• Active: a internal resource is created as active if it represents the last
part of the path-like name of an external resource that a Sleepy Node
registers to a Proxy;

• Visible: besides the already explained semantics, an internal resource is
visible if it is initialized, while it is invisible if it is registered but unini-
tialized.

To implement an active resource delegated by the Sleepy Node the Delegat-
edResource class is used. This class extends ActiveCoapResource, and its active
flag is always set as true. The main task of DelegatedResource is to handle the
resource value initialization/update and lifetime expiration.

As seen in section 2.1 on page 10, a delegated resource, in order to be reach-
able from the outside, needs to be initialized. The initialization is triggered by
a CoAP PUT request coming from the owner, that sets the DelegatedResource
as visible and observable.

This behavior is introduced in the handlePUT() method, that treats the first
PUT request from the owner as an initialization operation and any further PUT
from whichever node as an update operation for the delegated resource value.

Every update request, beyond updating the value, have different additional
behaviors depending on the sender’s identity:

• When the PUT request comes from the owner Sleepy Node, handlePUT()
must also retrieve the list of all delegated resources updated by nodes
different from the owner since the last update/read;

• If instead the PUT request comes from a node different from the owner,
handlePUT() must also set the resource as dirty, in order to be able to
build the list of dirty resources described in the previous point.

After its initialization a DelegatedResource also exposes the handler for a
POST method.
This can be used by the owner of the resource to retrieve a list of dirty resources,
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in a similar way to respect the PUT method, but with some improvements: this
method allows the owner to specify in the Uri-Query a possible attributes list
in order to filter out the proxy response.

Lifetime

Another feature of the delegated resource update requests coming from the
owner is the ability to set a lifetime (as defined in 2.1 on page 11) for the sent
value. Updates from configuring nodes does not affect the lifetime expiration.
This mechanism is implemented with a Timer object which is initialized with
the resource lifetime and, as soon as the internal counter expires, triggers a
TimerTask that removes the resource from the tree if the owner has not updated
its value before the expiration.

Every resource whose lifetime has never been set has no Timer instances to
run. If the owner of a resource issues a PUT on it specifying a lifetime in the
Uri-Query, handlePUT() has to stop the running Timer (if any) and to start a
new one with the specified expiration period for the task.

Obviously update and lifetime handling bring critical races problem that has
been solved executing both in mutual exclusion with the help of lock synchro-
nization mechanisms.
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3 Results

3.1 Scenario

In order to test our implementation we set up the following scenario: we de-
ployed two sleepy nodes simulated in Cooja. It was not posible to use Skymote
due to their limited ROM size, so we used Z1 motes. We have then deployed an
rpl-border-router in cooja, linked to the proxy via Tunslip interface. the global
prefix for accessing the capillary sensor network is aaaa::/64.

Border router exposes to the outside of the WSN, through Tunslip, an in-
terface having an IPv6 address of aaaa::1/64. This interface is virtualized in
the host through a tun0 interface.

Proxy endpoint should listen on the same tun0 interface, under the assump-
tion we made on sleepy nodes and proxy running on the same machine.

Also the Regular node simulated by Copper plug-in connects to address
aaaa::1/64 (tun0 interface).

In Figure 11 Sleepy node networks shows a possible scenario in Cooja, where
green node is a border router and yellow nodes are sleepy nodes.

Figure 11: Scenario set up on Cooja

3.2 Tests

For the test phase we prepare a pair of sleepy nodes carrying the same firmware.
They handle the following resources:

• dev/n: a name configurable by a Regular node;

• vsen/button: the value ON/OFF of a button used to turn on/off the
green led. A lifetime of 100s is asociated to this resource;
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• vsen/counter: a integer counter incremented by the value stored in
/vsen/counter/incr resource every time sleepy node awake. A lifetime
of 50s is associated to this resource.

• vsen/counter/incr: the increment value for the counter vsen/counter.

Resources dev/n and vsen/counter/incr have no lifetime because they carry
no time sensible informations. In fact, these ones are classified as configuration
resources: they are modified by a regular node in order to instill a particular
behavior to the sleepy nodes or to change their internal state. Hence, they must
be always reachable by a regular node.

At the beginning of the simulation, the messages shown in figure 12 are
exchanged. From the image, we may see the operation performed by the sleepy
node before entering the cyclic behavior:

• Proxy discovery by means of GET;

• Resource registration by means of POST;

• Resource initialization by means of PUT.

Figure 12: A sleepy node performs proxy discovery, resource registration and
initialization

The contents of exchanged packets is available as Wireshark pcap
1 registration initialization.pcap file distributed together with this report.

Now, in order to verify the correct delegation and initialization of resources
we simulate a regular node through Copper. It will perform the following oper-
ations we have documented:

• The discovery of which sleepy node have delegated at proxy, documented
in 13 on the next page
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• The retrieval of the list of resources delegated by a chosen sleepy node,
documented in 14 on the following page. From the same figure we may see
that the separation between the internal implementation of the resource
tree and the viewpoint of an external observer, as mentioned in 2.3.2 on
page 18 has been achieved: the external observer is only aware of the
resource it has explicitly delegated.

Figure 13: A regular node discovers sleepy nodes who have delegated at proxy
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Figure 14: A regular node retrieves the list of resources delegated by a chosen
sleepy node

After initial operations, the sleepy node enters in the main cycle, where

• it goes to sleep and wakes-up after 20 seconds;

• at wake-up

– it checks for dirty resources;

– if there are any, it retrieves the new value;

– it updates vsen/counter incrementing its value by vsen/counter/incr.

At this point, if we try to perform observing on the vsen/counter resource
we may be able to see the value of vsen/counter advancing by 1 unit every 20
seconds.

Let’s now suppose a regular node modifies the value of vsen/counter/incr.
The sleepy node will be informed of this change as soon as it wakes-up and
checks for dirty resources. Being vsen/counter/incr dirty resource, its value
will be retrieved by the sleepy node and stored in its local resource buffer. From
now on, the vsen/counter notifications received by an observing regular node
will present an increment in vsen/counter value by the new vsen/counter/incr.
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What we’ve just exposed is shown in figure 15. Notice sleepy node performs
communication tasks about every 20 seconds because, as previously stated, dur-
ing these 20 seconds it is sleeping.

Figure 15: The sleepy node cycle during the update of vsen/counter/incr

Let’s now suppose we don’t press the sensor button for more than 100 sec-
onds, thus letting the lifetime of button resource to expire. After the expiration,
if we issue a GET on /sp/0, we obtain the result in figure 16 on the next page,
from which we are able to notice the absence of /vsen/button in the returned list.
Furthermore, this example proofs delete operation is performed in the correct
way: internal resource “button”is correctly removed, while his parent “vsen”is
not deleted since it is needed in order for “counter”and “incr ”to be reachable.

If a delegated resource expires on the proxy, the sleepy node will realize
the expiration event when it will wake up from sleeping: when the sleepy node
will try a PUT operation on the expired resource, the proxy will respond with a
NOT FOUND message. Thus, the sleepy node will re-register the same resource
on the proxy and possibly it will retry the PUT operation. Sleepy node and
proxy operations generated in this scenario are reported in figure 17 on the
following page.
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Figure 16: After button resource expiration, resources with a common prefix
with button are still visible

(a) Proxy resource expiration and sleepy node re-registration sequence

(b) Sleepy-node re-registration sequence

Figure 17: Resource re-registering and re-initialization
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