# Project 2 - Quick Checkout

Francesco Paolo Culcasi Alessandro Martinelli Nicola Messina

#### M. Sc. in Computer Engineering Performance Evaluation of Computer System and Network

## Model

- System Description and Implementation
- Verification and Calibration

## 2 Analysis

- Scenario Definitions
- Exponential Service Demand
- Lognormal Service Demand
- Theoretical Result Analysis
  Model Fitting attempts

Model

Analysis Theoretical Result Analysis System Description and Implementation Verification and Calibration



- Project assumptions
  - Inter-arrival and Service demand
  - Splitting policy
  - Quick checkout tills
  - Service time
- Modeling and Implementation
  - CustomerGenerator
  - Customer
  - TillsHandler
  - Till

#### Verification and Calibration

## System verification

- Varying P
- Varying SD
- Constant IA

$$SD = \frac{IA \cdot N}{unitServiceTime}$$

### Calibration

- Comparison with M/M/1 system
- Parameters with fixed values, i.e.
  - N = 20, unitServiceTime = 2s.
- Significant values for K and P



| Model                       | Scenario Definitions |  |
|-----------------------------|----------------------|--|
| Analysis                    |                      |  |
| Theoretical Result Analysis |                      |  |

|                               | <b>Exponential SD</b> |                   | Lognormal SD   |
|-------------------------------|-----------------------|-------------------|----------------|
| Undistinguished tills         | P=0, exp SD           |                   | P=0, logn SD   |
|                               | $\uparrow$            |                   | $\uparrow$     |
| Normal & Quick checkout tills | P=0.1, exp SD         | $\Leftrightarrow$ | P=0.1, logn SD |

- Warm-up time analysis
- Load fairly distributed



Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi

Project 2 - Quick Checkout

Scenario Definitions Exponential Service Demand Lognormal Service Demand

Exponential Service Demand, Undistinguished Tills

- IA at a single queue is not exponential
- QT increasing with SD and has a Delta in 0.
- This is not a PASTA system, since  $p_0 \neq r_0$



Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Project 2 - Quick Checkout

Scenario Definitions Exponential Service Demand Lognormal Service Demand

Exponential Service Demand, Normal and Quick checkout tills

- Quick-Checkout tills behavior varying K
- Normal tills behavior varying K.
- Same trend: Solo Normal queueing time.



Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi Project 2 - Quick Checkout

Scenario Definitions Exponential Service Demand Lognormal Service Demand

- Comparison with Exp Undistinguished Tills
  - $\implies$  Similar behaviour
  - $\implies$  Lower probability to obtain lower queueing times
- Difference among QT and RT distributions



Scenario Definitions Exponential Service Demand Lognormal Service Demand

Lognormal Service Demand, Normal and Quick checkout Tills

Differences over Exp Normal+Quick checkout:

- Higher mean service demand of quick checkout customers
  - ⇒ Lower load (totArrivedCustomers)
  - ⇒ Higher idle time



Nicola Messina, Alessandro Martinelli, Francesco Paolo Culcasi

Project 2 - Quick Checkout

- Customers are sent to tills relying on the # of customers in each of them (NON probabilistic splitting). This brings to state dependent arrival rates.
  - $\implies$  Tills are non M/M/1 systems
- We can still use M/M/1 as an overestimation of the mean # of customers in the till
- We have a closed form for E[N]

- Till arrival rate (λ<sub>n</sub>) looks like a hyperbole, leading the analysis to hypothesize it is a standard discouraged model
- Actually a discouraged model variation fits lot better.



- Using Chapman-Kolmogorov equations we can exploit E[N] in a closed form
- both M/M/1 system and our system loads can be compared



